Category Archives: Optical Illusions

Optical Illusion Cartoon Story

For years I’ve wished someone would make an animated cartoon in which the events depend on the kind of visual transformations we see in many illusion pictures. It won’t be easy. Salvador Dali loved effects of these kinds, and helped sketch out a scheme for a Disney movie (though not one with a real storyline) in 1945/6. It’s called Destino. It didn’t get made, until Disney’s nephew Roy Disney made a version in about 2000. I don’t think it was so successful, but it was a fascinating chance to see what works, and what is less successful when animated. Take a look at a trailer and decide,

http://www.youtube.com/watch?v=iO1ghQFSXro

I reckon Goo-Shun Wang’s wonderful, recent animation of a character trapped on an Escher-style, never-ending staircase is far more successful:

http://www.moillusions.com/2007/04/halluciis-problem-illusion-video.html

To explore the kind of effects I think might work in a narrative, I devised a couple of still-picture cartoon stories. Here’s a pair of frames from one you can view on the www, in which the characters are almost trapped on another never-ending staircase, when a spiral stair suddenly transforms:

Check out the whole thing at:

http://www.Opticaloctopus.com

it also includes loads of hints on drawing illusion pictures.

(Not so) Geometric Illusions

Many of the illusions in popular books are geometric ones, in which lines that are really parallel look wonky, or lines that are aligned seem not to be. Most of these figures were discovered by German researchers, a hundred to a hundred and fifty years ago. But how geometric do they have to be? With graphics packages it’s easy and fun to explore. Here are versions of two famous illusions, one showing apparent divergence where the other presents convergence, against the same “zebra skin” background.

Continue reading

Escher’s “Waterfall” Explained

Here’s a demonstration of one of M.C.Escher’s famous pictures, the Waterfall. (Just put Escher Waterfall into Google Images to see his version).

First of all, you need to understand how a famous “impossible figure” called the tribar produces its effect.

One the left, in the picture above, we see the tribar as an impossible figure. The top of the vertical bar to the left seems to be at both the nearest point in the image and the furthest point at the same time. In the image to the right, seen from a slightly different viewpoint, there’s no problem. The top of the vertical bar really is nearest to us. But seen as to the left, with the arm exactly aligned with the end of the arm to the rear, our brains go for the option that bars are connected as the most probable configuration – even though it’s impossible.

If you are good at fusing stereo picture pairs without a viewer, you’ll find these two images will show the tribar in 3-D.  For a guide to how to view 3D picture pairs without a viewer, in “cross-eyed” mode, try:

http://www.3dphoto.net/text/viewing/technique.html

There are other sites if you search on “viewing 3d picture pairs” or similar, and also animated guides on Youtube.

Now for Escher’s Waterfall. On the right below is my stripped down version. The water seems to be flowing uphill, and then pouring down to the bottom again. But then compare the right hand image with the small middle image: the configuration is just two tribars, one on top of the other. And on the left, with the vertical posts sawn off, so that our brains don’t have to connect them to the zig-zagging channels, the whole configuration seems to recede horizontally as it should, instead of stacking up impossibly.

Note added 16/5/17:  There’s a brilliant movie demo of this on Michael Bach’s illusion site.